

Cascadable Silicon Bipolar MMIC Amplifier

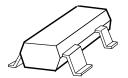
Technical Data

MSA-0311

Features

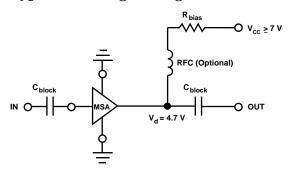
- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.3 GHz
- 11.0 dB Typical Gain at 1.0 GHz
- 9.0 dBm Typical P_{1 dB} at
 --1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available^[1]

Note


 Refer to PACKAGING section "Tapeand-Reel Packaging for Semiconductor Devices".

Description

The MSA-0311 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in the surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.


The MSA-series is fabricated using HP's $10\,\mathrm{GHz}\,\mathrm{f_T}, 25\,\mathrm{GHz}\,\mathrm{f_{MAX}},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metalli-

SOT-143 Package

zation to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

5965-9567E 6-298

MSA-0311 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	60 mA				
Power Dissipation ^[2,3]	240 mW				
RF Input Power	+13dBm				
Junction Temperature	150°C				
Storage Temperature	−65 to 150°C				

Thermal Resistance $^{[2,4]}$:	
$\theta_{\rm jc} = 500$ °C/W	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 2.0 mW/°C for $T_{\rm C} > 30$ °C.
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25$ °C

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz f = 1.0 GHz	dB	9.0	11.5 11.0	
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 1.6 GHz	dB		± 0.7	
f _{3 dB}	3 dB Bandwidth		GHz		2.3	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.5:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.7:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		9.0	
IP_3	Third Order Intercept Point	f = 1.0 GHz	dBm		22.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		140	
$V_{\rm d}$	Device Voltage	$T_C = 25$ °C	V	3.8	4.7	5.6
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

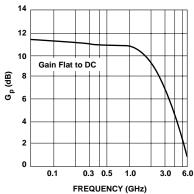
Notes:

Part Number Ordering Information

Part Number	No. of Devices	Container		
MSA-0311-TR1	3000	7" Reel		
MSA-0311-BLK	100	Antistatic Bag		

For more information, see "Tape and Reel Packaging for Semiconductor Devices".

^{1.} The recommended operating current range for this device is 20 to 40 mA. Typical gain performance as a function of current is on the following page.


MSA-0311 Typical Scattering Parameters (Z $_{0}$ = 50 $\Omega,$ $T_{_{A}}$ = 25 $^{\circ}C,$ $I_{_{d}}$ = 35 mA)

Freq.	S ₁₁		\mathbf{S}_{21}		S ₁₂			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.06	25	11.7	3.84	175	-17.9	.127	2	.24	- 7
0.2	.07	31	11.7	3.83	170	-17.9	.128	3	.23	-13
0.4	.07	38	11.6	3.78	159	-17.8	.129	6	.24	-28
0.6	.07	30	11.4	3.72	149	-17.6	.132	18	.24	-4 0
0.8	.08	21	11.2	3.65	140	-17.3	.136	11	.24	- 53
1.0	.08	10	11.0	3.56	130	-17.0	.141	13	.24	- 65
1.5	.09	- 32	10.4	3.31	106	-15.9	.160	17	.24	- 91
2.0	.09	-105	9.5	2.99	84	-14.9	.179	16	.23	- 115
2.5	.13	- 151	8.5	2.66	70	-14.1	.197	19	.23	-133
3.0	.19	-176	7.4	2.35	51	-13.5	.212	15	.22	- 145
3.5	.24	166	6.2	2.04	35	-13.0	.224	11	.23	- 151
4.0	.27	152	5.1	1.80	20	-12.7	.232	6	.24	- 151
5.0	.36	114	2.9	1.39	- 6	-12.1	.250	- 1	.25	- 152
6.0	.50	88	0.8	1.10	– 28	-11.8	.258	- 8	.25	-166

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

 $\begin{array}{l} Figure \ 1. \ Typical \ Power \ Gain \ vs. \\ Frequency, \ I_d = 35 \ mA. \end{array}$

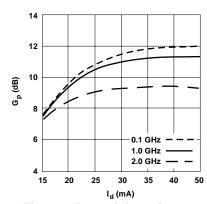


Figure 2. Power Gain vs. Current.

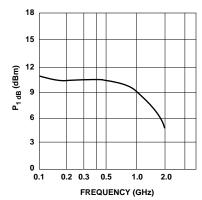


Figure 3. Output Power at 1 dB Gain Compression vs. Frequency, I_d = 35 mA.

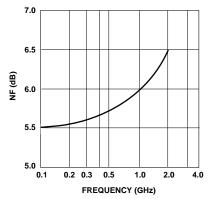
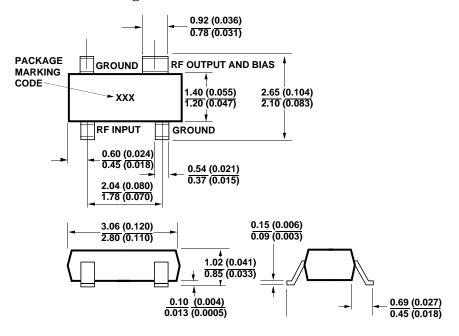



Figure 4. Noise Figure vs. Frequency, $I_d = 35 \text{ mA}$.

SOT-143 Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

Package marking code is "A03"